NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions.

نویسندگان

  • Alexander V Bartsev
  • William J Deakin
  • Nawal M Boukli
  • Crystal B McAlvin
  • Gary Stacey
  • Pia Malnoë
  • William J Broughton
  • Christian Staehelin
چکیده

Bacterial effector proteins delivered into eukaryotic cells via bacterial type III secretion systems are important virulence factors in plant-pathogen interactions. Type III secretion systems have been found in Rhizobium species that form symbiotic, nitrogen-fixing associations with legumes. One such bacterium, Rhizobium sp. NGR234, secretes a number of type III effectors, including nodulation outer protein L (NopL, formerly y4xL). Here, we show that expression of nopL in tobacco (Nicotiana tabacum) prevents full induction of pathogenesis-related (PR) defense proteins. Transgenic tobacco plants that express nopL and were infected with potato virus Y (necrotic strain 605) exhibited only very low levels of chitinase (class I) and beta-1,3-glucanase (classes I and III) proteins. Northern-blot analysis indicated that expression of nopL in plant cells suppresses transcription of PR genes. Treatment with ethylene counteracted the effect of NopL on chitinase (class I). Transgenic Lotus japonicus plants that expressed nopL exhibited delayed development and low chitinase levels. In vitro experiments showed that NopL is a substrate for plant protein kinases. Together, these data suggest that NopL, when delivered into the plant cell, modulates the activity of signal transduction pathways that culminate in activation of PR proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional analysis of the type 3 effector nodulation outer protein L (NopL) from Rhizobium sp. NGR234: symbiotic effects, phosphorylation, and interference with mitogen-activated protein kinase signaling.

Pathogenic bacteria use type 3 secretion systems to deliver virulence factors (type 3 effector proteins) directly into eukaryotic host cells. Similarly, type 3 effectors of certain nitrogen-fixing rhizobial strains affect nodule formation in the symbiosis with host legumes. Nodulation outer protein L (NopL) of Rhizobium sp. strain NGR234 is a Rhizobium-specific type 3 effector. Nodulation tests...

متن کامل

Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234.

The nitrogen-fixing symbiotic bacterium Rhizobium species NGR234 secretes, via a type III secretion system (TTSS), proteins called Nops (nodulation outer proteins). Abolition of TTSS-dependent protein secretion has either no effect or leads to a change in the number of nodules on selected plants. More dramatically, Nops impair nodule development on Crotalaria juncea roots, resulting in the form...

متن کامل

Characterization of NopP, a type III secreted effector of Rhizobium sp. strain NGR234.

The type three secretion system (TTSS) encoded by pNGR234a, the symbiotic plasmid of Rhizobium sp. strain NGR234, is responsible for the flavonoid- and NodD1-dependent secretion of nodulation outer proteins (Nops). Abolition of secretion of all or specific Nops significantly alters the nodulation ability of NGR234 on many of its hosts. In the closely related strain Rhizobium fredii USDA257, ina...

متن کامل

Y4lO of Rhizobium sp. strain NGR234 is a symbiotic determinant required for symbiosome differentiation.

Type 3 (T3) effector proteins, secreted by nitrogen-fixing rhizobia with a bacterial T3 secretion system, affect the nodulation of certain host legumes. The open reading frame y4lO of Rhizobium sp. strain NGR234 encodes a protein with sequence similarities to T3 effectors from pathogenic bacteria (the YopJ effector family). Transcription studies showed that the promoter activity of y4lO depende...

متن کامل

The Rhizobium sp. strain NGR234 systemically suppresses arbuscular mycorrhizal root colonization in a split-root system of barley (Hordeum vulgare).

Nitrogen-fixing bacteria (rhizobia) form a nodule symbiosis with legumes, but also induce certain effects on non-host plants. Here, we used a split-root system of barley to examine whether inoculation with Rhizobium sp. strain NGR234 on one side of a split-root system systemically affects arbuscular mycorrhizal (AM) root colonization on the other side. Mutant strains of NGR234 deficient in Nod ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 134 2  شماره 

صفحات  -

تاریخ انتشار 2004